O1—Turtle Power

Introduction:

This term we're going to be learning a computer
programming language called Python. The person who
created Python named it after his favourite TV show: Monty
Python’s Flying Circus. Python is used by loads of
programmers for many different things. Python is a
powerful and clever language, used at YouTube, NASA,
CERN and others. If your club has a Raspberry Pi, you can
use Python to program it. Many people love Python because
it is easy to read (at least compared to some other
programming languages). Being able to read code is a very
important skill, just as important as writing it.

STEP O0: OPEN UP THE PYTHON EDITOR

If python is on your computer already, it's time to get
started.

e On Windows, find IDLE in the start menu.

e On Mac OS X, open up Terminal.app and type -idle
and press enter.

e On Linux, open up a Terminal, and type idle and
press enter.

If you don't have Python yet, don't panic! You can download
the latest version of Python from http://www.python.org/.
The exact version doesn't really matter but we're using
Python 3, so it should start with 3 (not 2).

When IDLE starts you will see an Output window called

Python Shell . We need to open a new window to write
code in. Go to File -> New Window SO you're ready for
Step 1. Make sure you have both windows visible.


http://www.python.org/

STEP 1: HELLO, WORLD!

1. Open IDLE, the editor that comes with Python. All our
code will be written in this editor. When you open it,
you will see an Output window, where errors and
results will appear.

2. If you haven't yet, choose File -> New Window . An
empty window will appear, with 'Untitled' in the title
bar.

You should have two windows open now, one for
writing your program, another for showing output.
Make sure you write in the right one!

3. Enter the following code into the new window:

print("Hello, World!")

4. Double check you're not in the Python Shell window,
and Save your code.

You can do this by choosing File -> Save. When prompted
for a filename, enter hello.py, and save the file to your
desktop. Then choose Run -> Run Module.

Congratulations on your first Python program :D (PS! You
can tell it to print anything you like, why not change it to
say hello to you? Change it to say your name instead)

ProTip:

* On Windows and Ubuntu, use Ctrl-N to create a new
shell window, use ctrl-S to save your file after you've
finished editing, and press F5 to run your program. On
some computers you may need to press a Fn key too.

* On Mac OS X, cmd-N to create a new shell window,
Command-S to save your file, and hold down the function
(fn) key and press F5 to run your program.

STEP 2: HELLO, TURTLE!

Next, we're going to have some fun with turtles. A turtle is



a tiny robot that draws on your screen, we can tell it to
move around using Python commands.

1. Open a new code window (From the File menu) and
write the following:

from turtle import *

forward(100)

2. Save your program as turtles.py and choose Run ->
Run Module. See how the turtle moved forward 100
pixels? The turtle has a pen attached, and draws lines
as it moves around the screen.

ProTip: Python program files should always be given a
name ending in '.py"'.

3. Let's make the turtle move around the canvas! Try
using backward(distance) as well as turning the turtle
by using right(angle) and left(angle) . Eg
backward (20) tells the turtle to move backwards 20
pixels, and right(90) tells the turtle to turn right 90

degrees. You can give more than one instruction at a
time, they will be executed in order.

from turtle import *

speed(11)
shape("turtle")

forward (100)
right(120)
forward (100)
left(90)
backward (100)
left(90)
forward (50)



Play around a bit writing your own shapes, using forward ,
backward , left, right . Remember, forward and
backward move in pixels, but left and right turnin
angles. Let's look at a turtle turning right.

North
0
|
West | East
270 ----- essse 90
|
|
180
South

When the turtle is facing North, turning right 90 degrees,
makes it face East, turning 180 degrees makes it face
south, and turning 270 degrees makes it face West. If you
turn 360 degrees, you end up where you started.

What about turning left?

North
0]
|
West | East
90 ----- +----- 270
|
|
180
South

When the turtle is facing North, turning left 90 degrees,
makes it face West, turning 180 degrees makes it face
south, and turning 270 degrees makes it face East. If you
turn 360 degrees, you end up where you started. One full
turn is always 360 degrees.



What does the code at the beginning of our

program do

e from turtle import * tells Python we want to use the

turtle library, a collection of code we can use to draw
on the screen. Using a library means we can save time.

e speed() sets the speed of the turtle, it takes a value
between 1 and 11. 11 is the fastest, 1 is the slowest.

e shape() We are using the "turtle" shape, but it can

also take the values "arrow", "circle", "square",
"triangle" or "classic".

We will be putting these three instructions at the top of all
our programs in this lesson. If you like you can make your
turtle a different shape, or go as fast or slow as you want.

STEP 3: DRAWING SHAPES!

Lets make a square by telling the turtle how to move
around.

1. Open up a new file in IDLE, and write the following code
in:



from turtle import *

speed(11)
shape("turtle™)

forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)
forward(100)
right(90)

Save your program and choose run -> new module. Do
you see a square?. The turtle turns 90 degrees four
times, and ends up facing back in the same direction as
it started. Turning 90, 90, 90 and 90 again, turns the
turtle 360 degrees in total.

What about a triangle? A triangle has three corners, so
we need to turn three times. If we want to end up back
in the same direction, we will need to turn a total of
360, like the square. So we will turn 120 degrees, then
120 degrees, and once more.

Edit your code to look like the following, to draw a
triangle instead:



from turtle import *

speed(11)
shape("turtle™)

forward (100)
right(120)
forward(100)
right(120)
forward(100)
right(120)

3. Run your code. Do you have a triangle?

What's your favourite colour? You can change the colour of
the lines using the function pencolor (Python uses

American spellings), and you can also change the pen size
using pensize :

1. Edit the code from before to look like the next
example, by adding in these new commands:



from turtle import *

speed(11)
shape("turtle™)

pensize(10)
pencolor ("red")
forward(100)
right(120)
pencolor ("blue")
forward (100)
right(120)
pencolor ("green")
forward(100)
right(120)

2. Run your code, what does it draw on screen?
This code draws a thick triangle in three different
colors.

3. Try changing the colors in your code, run it, and see
what happens.
The turtle knows hundreds of different colours, not just
red, blue and green, try using your favourite colour!
You can also specify colours in hex like we did in CSS.
Instead of using pencolor(red) you could use hex
pencolor ("#FFO000") .
What colour is #FF4F00?

STEP 4: REPEATING YOURSELF (WITH A FOR

LOOP)

That last program was the same commands over and over
again. Instead of writing them down, let's ask the computer
to repeat them for us. You should have encountered
iteration in Scratch before using the Forever and

Repeat / Repeat until blocks. In Python for loops are
used when you have a piece of code which you want to



repeat n number of times. In this case we want to repeat
the code (that is indented) 4 times (because a square has 4
sides).

1. Open up a new file and type the following in:

from turtle import *

speed(11)
shape("turtle™)

for count in range(4):
forward(100)
right(90)

2. Save your program and choose: Run -> Run module.

Notice the program is indented, or pushed to the left
under the for loop. Python uses spaces to know which
commands to repeat. You can use the Tab key in IDLE
to add indents, and use Shift-Tab to remove some.

3. Let's see what happens when we only indent forward,
and edit your program to look like this one:

from turtle import *

speed(11)
shape("turtle™)

for count in range(4):
forward(100)
right(90)

4. Notice how forward is indented and right isn't? What
do you think this program does? Try running it to find
out?

Did you get a straight line? Python will repeat forward
four times, and then turn right. Python uses spaces to



group commands together, like scratch uses blocks.
Python will complain if the code isn't properly lined up.

5. Let's change it back to the earlier program, and get it
to run a square, but instead of using numbers in the
code, we can assign names. This makes it easier to see
what the program is doing, and also helps us to stop
repeating ourselves.

Edit the file to look like this:

from turtle import *

speed(11)
shape("turtle")

sides = 4

length = 100

angle = 90

for count in range(sides):
forward(length)
right(angle)

6. Save your program and choose: Run -> Run module.

Can you draw the following shapes by changing the values?

e a triangle? (three sides)

e a pentagon? (five sides)

e a hexagon? (six sides)

e an octagon? (eight sides)
Remember, a Triangle has three sides, and turns 120
degrees. Turning 120 degrees for each corner means we

turn 360 degrees in total. For a Square, we turn 90 degrees
for four corners, which also adds up to 360 degrees.



If you are turning six times, how much should you turn so it
adds up to 360? Try out humbers and see what shapes you
get.

STEP 5: TURN, TURN, TURN

Instead of us working out the angle, why don't we let the
computer do it for us. Python can let you do some
operations on numbers, like addition, subtraction,
multiplication and division.

We could write sides = 4 + 1 instead of 5, or
sides = 4 - 1 instead of 3. For multiplication, Python uses
* and for division, we write /.

If we need to turn 360 degrees in total, we can work out the
angle we'll need. For a square, 360 / 4 is 90, for a

Triangle, 360/3 is 120.

1. Change your program to calculate the angle as
following.

from turtle import *

speed(11)
shape("turtle™)

sides = 4
length = 20

angle = 360/sides

for count in range(sides):
forward(length)
right(angle)

2. Now change the number of sides, does Python get it
right? Try drawing a hexagon (6 sides), or any number
of sides you want!



STEP 6: SOLID SHAPE

1. We can ask the turtle to fill in shapes with a colour, by
using begin_fill() and end_fill() . Change your
code to
add these commands in:

from turtle import *

speed(11)
shape("turtle™)

sides = 4
length = 20

fillcolor('red'")
pencolor('red"')
begin_fill()

angle = 360/sides

for count in range(sides):
forward(length)
right(angle)

end_fill()

Like with pencolor, fillcolor sets the color the

turtle uses to fill in the shapes you draw. This draws a
red square with a red outline.

You use begin_fill() to tell the turtle you're drawing
a shape to colour-in, and end_fill() to say you've
finished it.

2. Try changing the colours, sides and lengths to see what
shapes you can draw!

STEP 7: PEN GOES UP, PEN GOES DOWN



If you want to move the turtle without leaving a trail behind
it, you can use penup() and pendown() to turn drawing on
and off.

1. In a new file, try the following:

from turtle import *

speed(11)
shape("turtle™)

pencolor('red')

for count in range(20):
penup ()
forward(10)
pendown ()
forward(20)

2. This should draw a dashed line across your screen. Run
it and see!

One last little trick. home() returns the turtle to the starting
position. clear() wipes the screen clean, and reset()
moves the turtle and clears the screen.

STEP 8: GO WILD!

You can go forward() , backward() , left() , right() ,
you can loop using for count 1in range(4) , change
colours, change speed and even fill in shapes!

Can you draw a house, a bird? a snake? a cat? a dog? a
lion? Combine the shapes together and see what you can
draw. Can you draw a robot?



These projects are for use within the UK. You are required to register your club in the UK and required by law to have
child protection checks and insurance. Registering your club with us means Code Club UK can support you with the
running of your club. More information is available on our website at http://www.codeclub.org.uk/. This coursework is

developed in the open on GitHub, https://github.com/CodeClub/python-curriculum come and join us!



